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Abstract

Resistance of hypoxic solid tumor niches to chemotherapy and radiotherapy remains a major scientific challenge that calls
for conceptually new approaches. Here we exploit a hitherto unrecognized ability of sickled erythrocytes (SSRBCs) but not
normal RBCs (NLRBCs) to selectively target hypoxic tumor vascular microenviroment and induce diffuse vaso-occlusion.
Within minutes after injection SSRBCs, but not NLRBCs, home and adhere to hypoxic 4T1 tumor vasculature with
hemoglobin saturation levels at or below 10% that are distributed over 70% of the tumor space. The bound SSRBCs
thereupon form microaggregates that obstruct/occlude up to 88% of tumor microvessels. Importantly, SSRBCs, but not
normal RBCs, combined with exogenous prooxidant zinc protoporphyrin (ZnPP) induce a potent tumoricidal response via a
mutual potentiating mechanism. In a clonogenic tumor cell survival assay, SSRBC surrogate hemin, along with H2O2 and
ZnPP demonstrate a similar mutual potentiation and tumoricidal effect. In contrast to existing treatments directed only to
the hypoxic tumor cell, the present approach targets the hypoxic tumor vascular environment and induces injury to both
tumor microvessels and tumor cells using intrinsic SSRBC-derived oxidants and locally generated ROS. Thus, the SSRBC
appears to be a potent new tool for treatment of hypoxic solid tumors, which are notable for their resistance to existing
cancer treatments.
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Introduction

Hypoxic tumor cells are present in the vast majority of human

solid cancers and establish significant niches for therapeutic

resistance and tumor recurrence. Under hypoxic conditions within

tumors, evolutionarily conserved oxygen sensors initiate distress

pathways that lead to activation of hypoxia-inducible transcription

factors, proinflammatory and pro-angiogenic stimuli [1]–[3]. The

latter induce a disordered network of blood vessels, anastomotic

branches, fenestrations and shunts resulting in heterogeneous

blood perfusion, nutrient delivery, cyclic or chronic deoxygenation

and aerobic glycolysis [4]. In this microenvironment, tumors

exhibit impaired drug transport, treatment resistance and aggres-

sive malignant progression.

Therapeutic attempts to selectively target hypoxic tumor cells

have largely focused on bioreductive prodrugs that are activated

by enzymatic reduction under moderate to severe hypoxic

conditions. To date, these agents have not proven clinically useful

[5]. Tirapazamine, the earliest prototype of this group demon-

strated no survival benefit when added to standard chemotherapy

and was associated with dose limiting myelosuppression related to

activation of aerobic reductases in normal tissues [6]. Although the
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key vulnerabilities of hypoxic cells are not yet determined, a

second approach uses small molecule inhibitors targeting hypoxia-

inducible factor 1 (HIF1), the unfolded protein response (UPR)

and mTOR pathways [5]. Both bioreductive and molecularly

targeted agents share the challenge of drug penetration through

poorly perfused hypoxic tissue [7],[8]. The bioreductive agents

must further deal with cumulative toxicity of their DNA-reactive

cytotoxins when used together with standard chemotherapeutics

[5]. Finally because of the heterogeneity in hypoxia between

tumours of the same type, both groups require in vivo diagnostics

to accurately measure hypoxia in order to select patients who can

benefit most from these treatments [9]. In view of these barriers,

conceptually new strategies and agents are needed. In one such

approach that differs fundamentally from those directed to

hypoxic tumor cells, we herein provide sickle erythrocytes

(SSRBCs) to target the hypoxic tumor vascular microenviroment

and induce a tumoricidal response using intrinsic SSRBC oxidants

and locally generated ROS. Importantly, this approach has little

effect on normal vasculature and lacks cumulative toxicity with

other cytotoxics suggesting that it may possess a broader

therapeutic index than agents that selectively target hypoxic

tumor cells alone.

In sickle cell disease, a monogenic mutation in the b-chain of

hemoglobin wherein the sixth amino acid in the b-globin chain is

changed from glutamic acid to valine, induces hemoglobin

polymerization and changes in erythrocyte morphology during

hemoglobin desaturation [10]. Disturbances resulting from this

mutation include impaired microvascular blood flow [11], episodic

vasoocclusion [12], ischemia-reperfusion injury [13], and endo-

thelial cell activation [14],[15]. Tissue hypoxia and deoxygenation

of SS hemoglobin occur frequently in sickle cell disease,

particularly in venules, where blood velocity is reduced

[11],[16]. Hypoxia, oxidative stress and proinflammatory cyto-

kines also upregulate several vascular adhesion receptors [17]–

[24]. In response to hypoxia, transgenic sickle mice show

pronounced vascular inflammation compared with normal mice,

leading to reduced blood flow and transient venular stasis

[24],[25]. In the course of painful sickle cell crisis, activated

SSRBCs adhere to adhesive ligands on the upregulated vascular

endothelium, recruit leukocytes and platelets leading to microves-

sel occlusion. SSRBCs entrapped in this process undergo

autohemolysis generating excessive reactive oxygen species and

autooxidized heme iron that results in severe tissue injury [26].

In a parallel to painful sickle cell crisis, the microvasculature of

most solid tumors is upregulated to express several vascular

adhesion molecules in response to cyclic hypoxia within the tumor

[2] and proinflammatory cytokines generated by tumor cells

[22],[24],[27]–[30].

These findings provided a conceptual basis for a seminal report

which precisely identified a central role for SSRBCs in targeting

the upregulated/hypoxic tumor vasculature, inducing vaso-occlu-

sion/autohemolysis and generating intrinsic/locally-derived oxi-

dants leading to endothelial injury and a tumoricidal response

[31]. Subsequently, SSRBCs were imaged in tumors or identified

in tumor microvessels at autopsy but there were no reported

therapeutic applications [32–34]. Here, we examine the original

concept and demonstrate novel properties of SSRBCs in

selectively targeting the hypoxic vascular microenvironment of

solid tumors, inducing diffuse tumor vascular occlusion and

potentiating the tumoricidal effectiveness of exogenous pro-

oxidants both in vivo and in vitro.

Results

4T1 mammary carcinoma is neovascularized, hypoxic and
expresses several adhesion molecules and heme
oxygenase

Initially, we studied the 4T1 carcinoma implanted in the dorsal

skin fold window chambers 8 days after tumor implantation for

evidence of neovascularization hypoxia, adhesion molecule and

heme oxygenase expression. In Figure 1 A,C, eight-day old 4T1

tumors exhibit a dense, disordered vascular network with acutely

branching capillaries and anastomotic channels. At this point, the

4T1 tumor vascular microenvironment is markedly hypoxic,

evidenced by hemoglobin saturation levels at or below 10% that

are distributed over 70% of the tumor space (Figure 1B,D). In

addition, tumor microvessels within 4T1 tumors exhibit expression

of adhesion ligands PCAM-1, VCAM-1, laminin a5 and av

integrins (Figure 2A–D). We also note increased expression of

heme oxygenase (HO-1) in 4T1 tumors compared to syngeneic

liver cells (Figure S1). Heme oxygenase protects cells against the

cytotoxic effect of heme and related oxidation products and is

relevant because heme is known to be released by hemolysis

during SSRBC-induced vaso-occlusion as described below. Based

on these studies, intravital microscopy studies using SSRBCs and

NLRBCs described below were conducted on 8-day old 4T1

tumors which are neovascularized, hypoxic and express several

adhesion molecules along with heme oxygenase.

SS RBCs but not normal RBCs accumulate preferentially
in tumors and occlude tumor microvessels in vivo

Using intravital microscopy with tumors implanted in dorsal

skin fold window chambers, we sought to characterize the

behavior of intravenously administered SSRBCs and NLRBCs

in 8 day old hypoxic and neovascularized 4T1 carcinomas. Within

5 minutes after infusion, fluorescently labeled SSRBCs adhered to

a large number of core and peripheral tumor microvessels

(Figure 3A, Movie S1/legend). By thirty minutes, SSRBC

adherence to microvessel walls increased resulting in formation

of microaggregates that occluded both curved and straight

segments of tumor microvessels (Figure 4A,C,E; S1/legend).

Blood stasis evident at this point (Movie S1) was further

substantiated by the identification of individual labeled cells on

still images (Figure 4A,C,E). In the same time period, NLRBCs

displayed minimal adhesion or vaso-occlusion in tumor vessels

(Figure 3B; Figure 4BDF, Movie S1/legend) and neither NLRBCs

nor SSRBCs showed appreciable adhesion or vaso-occlusion in

adjacent normal host subdermal vascular endothelium

(Figure 3C,D, Movie S1/legend).

Quantitation of SSRBC and NLRBC tumor uptake and
vaso-occlusion

To quantitate the SSRBC uptake and vaso-occlusion in tumors,

compared to NLRBCs, we analyzed still images from intravital

microscopic video 30 minutes after NLRBC or SSRBC infusion

into mice bearing 4T1 tumors. Mice infused with fluorescently-

labeled SSRBCs showed substantially greater fluorescence in

tumor vessels compared to NLRBCs (p,0.005) and increased

uptake in tumor vessels compared to adjacent normal subdermal

vessels (p,0.008) (Figure 3G). Similarly, tumor tissues showed a

38-fold increase in RFP fluorescence of SSRBCs trapped in

tumors compared to l NLRBCs (p = 0.00001) (Figure 3E,F,H).

With respect to vaso-occlusion, fluorescently-labeled SSRBCs

occluded 8862.20%(SEM) of tumor vessels compared to

1.7461.37%(SEM) for NLRBCs (p,0.00001) and

Sickle Cells Target/Potentiate Tumor Cytotoxics
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4.462.12%(SEM) for SSRBCs in adjacent host normal subdermal

vessels (p,0.00001) (Figure 4G).

Biodistribution of normal RBCs and SS RBCs in normal
tissues and tumors

We wished to determine whether the selective uptake of

SSRBCs but not NLRBCs in tumors also occurred in normal

organs. We therefore analyzed sections of organs and tumors

harvested within 24 hours after infusion of RFP labeled SSRBCs

or NLRBCs into 4T1 carcinoma for the presence of RFP-labeled

SSRBCs or NLRBCs. Whereas uptake of SSRBCs in 4T1 tumors

was significantly greater compared to NLRBCs (p = 0.0014), there

were no significant differences in NLRBC versus SSRBC uptake

in spleen, lungs or kidney (Figure 5A). Sections of tumor tissue

from mice receiving SSRBCs examined at this time showed areas

of cytoplasmic eosinophilia with capillary engorgement consistent

with acute ischemia not seen in tumors of mice injected with

NLRBCs (Figure 5E). Corresponding sections of spleen, lungs and

kidneys from mice receiving SSRBCs or NLRBCs were devoid of

inflammation, infarction or necrosis, indicating that SSRBCs did

not induce acute injury to normal organ (Figure S2). These data

indicate that SSRBC deposition in 4T1 tumor microvasculature

significantly exceeds that of NLRBCs but not in other normal

organs and that SSRBC uptake in tumors is accompanied

histologically by acute ischemic changes but no significant

pathology in normal organs.

SSRBCs but not NLRBCs plus a pro-oxidant regimen
induce a tumoricidal effect against 4T1 carcinoma in vivo

Studies in sickle cell patients have shown that SSRBCs involved

in postcapillary occlusion can release SSRBC-derived heme,

hemichrome and ROS causing oxidative tissue damage [35]–

[41]. We therefore determined whether SSRBCs could induce a

tumoricidal response when the tumor cells are rendered suscep-

tible to oxidative stress with exogenous pro-oxidants. For this

purpose, we deployed two potent pro-oxidative regimens, zinc

protoporphyrin (ZnPP) (a competitive inhibitor of heme oxygen-

ase) alone or together with doxorubicin (ZnPP-D). Both regimens

were shown previously to efficiently promote cytotoxicity of tumor

cells exposed to oxidative stress in vitro in an NADH-dependent

manner [42],[43]. Groups of 10 mice with established 4T1 tumors

were treated with one or three SSRBC infusions plus ZnPP or

ZnPP-D (see Table S1 for protocol). This resulted in a dramatic

delay in tumor growth compared to the PBS control group

(p,0.0001) (Figure 6A). Notably, the group receiving three

SSRBC infusions showed a quadrupling of growth delay

compared to PBS control. In contrast, tumor bearing mice

receiving SSRBCs1x or 3x or NLRBCs1x or 3x, ZnPP alone,

Doxil alone or combinations of NLRBCs3x with ZnPP,

NLRBCs1x or 3x with Doxil or ZnPP-D induced no growth

delay compared to the PBS control (Figure 6B). Since SSRBCs1x

or 3x show potent anti-tumor effects when used in combination

but are ineffective by themselves, SSRBCs together with ZnPP or

Figure 1. Eight day old 4T1 carcinoma is vascularized and hypoxic. Intravital microscopy of two eight day old 4T1 tumors implanted in the
dorsal skin window chamber viewed with light microscopy shows diffuse tumor microvascularity (panels A, C). Corresponding hyperspectral imaging
of the same tumors exhibits hemoglobin saturations #10% over a 70% of the tumor surfaces (B,D). Magnification 56.
doi:10.1371/journal.pone.0052543.g001
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ZnPP-D appear to exhibit a mutual potentiation. Mice displayed

no acute toxicity of SSRBC1x or 3x combined with ZnPP or

ZnPP-D and there were no significant differences in weights

compared to the PBS control group (p = 0.485). H&E sections

from mice treated with SSRBC + ZnPP-D showed more diffuse

tumor necrosis than PBS controls. Spleens of mice treated with

SSRBCs3x + ZnPP-D displayed scattered hemosiderin deposits

not present in untreated control tissues. However, liver, kidney,

spleen and brain, including the hippocampus, cortex, cerebellum

and Purkinje fibers, from SSRBC-treated and PBS controls were

unremarkable and notably devoid of SSRBC vascular aggregates,

inflammation, infarction and necrosis. Thus, treatment with

SSRBC3x + ZnPP-D did not induce histologically demonstrable

toxicity in normal host organs.

Sickle cell oxidants induce 4T1 cell death in the presence
of pro-oxidants in vitro

We sought to understand the mechanism of the mutual

potentiation between SSRBCs and ZnPP in the tumoricidal effect

noted in vivo. In the course of vascular adhesion, entrapped

SSRBCs generate pro-oxidant membranes along with oxidized

hemichrome and activated endothelial cells produce hydrogen

peroxide (H2O2) [36],[38],[41]. We reasoned that tumor cells

deprived of oxidant protection by heme oxygenase inhibition

would be susceptible to apoptosis. To test this hypothesis, we used

a clonogenic tumor cell survival model in vitro in which we

exposed 4T1 cells to heme oxygenase inhibition (ZnPP) [44],

hemin [protoporphyrin IX containing ferric iron (heme b)] and

H2O2 alone and in various combinations (see Figure S2 for

protocol). Incubation of 4T1 tumor cells with hemin, H2O2 or

ZnPP alone resulted in no significant tumor killing (p.0.5).

Likewise, using hemin together with H2O2 or ZnPP did not

enhance the tumor cell killing (p.0.05) (Figure 7). In contrast,

treating 4T1 cells with i) hemin alone or combined with ZnPP for

2 hrs followed by ZnPP and H2O2 for 2 hrs or, ii) ZnPP for

2 hours followed by hemin and H2O2 for 2 hrs resulted in

significantly increased 4T1 tumor cell killing compared to each

agent alone (p,0.0002) or any two of these agents used

simultaneously (p,0.0001) (Figure 7). Since only the three agent

regimen (ZnPP, hemin and H2O2) used simultaneously or

sequentially produced a significant tumoricidal effect whereas

the individual agents were ineffective, these data are concordant

with the mutual potentiation of SSRBCs and ZnPP in the

tumoricidal response described above in vivo in the 4T1 tumor

model.

Discussion

Resistance of hypoxic solid tumor niches to chemotherapy and

radiotherapy remains a major scientific challenge that invites

conceptually new approaches. Here we exploit the previously

unrecognized ability of the sickled erythrocyte (SSRBC), but not

NLRBCs, to selectively target hypoxic microvessels of solid tumors

and induce diffuse tumor vascular occlusion. Importantly,

SSRBCs, but not normal RBCs, also induce a potent tumoricidal

response via a mutual potentiation of exogenous pro-oxidants

ZnPP or ZnPP-D. A clonogenic tumor cell survival model

confirms this mutual potentiation and demonstrates a key obligate

role for SSRBC-derived heme and H2O2 in potentiating the

tumoricidal effect of ZnPP. In addition to SSRBC’s remarkable

tumor targeting ability, this is the first report that harnesses the

SSRBC for anti-tumor therapy.

In contrast to pharmaceutical treatment directed only to the

hypoxic tumor cell, the present approach targets the hypoxic

tumor vascular microenviroment and induces injury to hypoxic

tumor microvessels and tumor cells using intrinsic SSRBC

oxidants and locally generated ROS. Data in Figures 3 and 4

and their legends plus the Movie S1 demonstrate that the initial

events in the tumoricidal process consist of rapid adherence of

SSRBCs but not NLRBC to tumor vasculature, formation of

microraggregates leading to diffuse tumor microvessel occlusion.

The SSRBC adherence to tumor microvessels could not be

ascribed to non-specific RBC trapping since NLRBCs rarely

adhered to tumor vessels. Likewise, it could not be attributed to

asymmetric distribution of SSRBCs cells and NLRBCs in the host,

since NLRBCs and SSRBCs sequester in normal organs to a

similar degree.

Concurrent with SSRBC localization, adherence and occlusion

of tumor microvessels, our data further demonstrate the presence

hypoxia in the 4T1 tumor microenvironment. Hyperspectral

imaging indicates that 70% or the 4T1 tumor microvessels exhibit

a hemoglobin saturation between 0–10% which corresponds to

pO2 values ,10% mm Hg in the oxygen-hemoglobin dissociation

curve [45],[46]. This degree of tumor hypoxia [8],[47] could

prime the tumor vasculature for adherence/vaso-occlusion by

SSRBCs by stimulating tumor cell synthesis of proangiogenic/pro-

inflammatory proteins such as VEGF and TNFa [1],[2],[24],[26].

The latter upregulates several tumor vascular adhesion molecules

capable of capturing activated SSRBCs [23],[24],[27]–[30].

Figure 2 demonstrates that several such vascular adhesion ligands

are expressed in tumor microvessels. As in painful sickle cell crisis,

the inflammatory/procoagulant condtions at the site of SSRBC-

inuduced tumor vaso-occlusion could also promote platelet

activation and leukocyte recruitment leading to accelerated

vascular injury [26].

Figure 2. Expression of adhesion molecules on 4T1 tumor
vascular endothelium. Frozen sections of 4T1 tumors stained with
antibodies against various adhesion molecules shows significant
endothelial expression of PECAM-1 (A), ICAM-4 (B), laminin a5 (C). av
integrin (D). Secondary antibodies alone used as negative controls to
stain the same tumor sections are shown in the inset of each panel.
Magnification 406.
doi:10.1371/journal.pone.0052543.g002
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Our proposed mechanism of the tumoricidal effect in this

system, shown schematically in Figure 8, implicates SSRBCs-

induced tumor vaso-occlusion in hypoxic tumor vessels as the

central event in both tumor vascular endothelial cell and tumor

cell injury. We hypothesize that SSRBCs entrapped in the vaso-

occlusive process undergo autohemolysis and release intrinsic

hemichrome, hemoglobin S and ROS. These powerful cellular

toxins are capable of inducing tumor endothelial cell and tumor

cell injury [35]–[40]. SSRBC hemichrome, for instance, sponta-

neously generates twice as much superoxide, peroxide/hydroxyl

radicals as NLRBCs [35],[38] and hemoglobin S is rapidly

converted to methemoglobin which forms highly lipophilic heme-

nitrosyl complexes that intercalate and oxidize cell membranes

[48]. Tumor endothelial cells activated by SSRBCs contribute to

the process by generating hydrogen peroxide, leading to endo-

thelial membrane injury (peroxidation) and diapedesis of inflam-

matory monocytes into the tumor parenchyma [19],[41].

We further surmised that the effectiveness of these SSRBC/

endothelial cell-derived oxidants is enhanced when the tumor and

endothelial cells are exposed to ZnPP, a metalloporphyrin that

competitively inhibits the degradation of heme by heme oxygenase

[49]. The latter, a 32-kD microsomal membrane enzyme is

overexpressed in the 4T1 tumor and a broad array of tumor cell

types [49]. Indeed, these studies show that SSRBC infusion

combined with ZnPP exhibited a unique mutual potentiation in

tumor killing in vivo. This novel effect was mimicked in our

clonogenic tumor survival model in vitro wherein hemin and

H2O2., surrogates for SSRBC-derived hemichrome and endothe-

lial cell H2O2 respectively, efficiently potentiated the death of

ZnPP-treated 4T1 tumor cells.

The accelerated tumor growth noted after a single SSRBC

infusion was reversible after the addition of ZnPP, a potent

inhibitor of HO-1. This effect may be ascribed to SSRBC-induced

vaso-occlusion in the tumor resulting in increased tumor hypoxia

and release of SSRBC-derived heme. Both heme and hypoxia

activate HIF-1a in tumor cells which, in turn, stimulates synthesis

of HO-1 [50]. The latter is a powerful stimulant of tumor

angiogenesis and promotes tumor growth [49]. Since the addition

of ZnPP to SSRBCs abrogated the accelerated tumor growth and

promoted statistically significant growth delay, HO-1 may be

pivotal in the accelerated tumor growth process induced by

SSRBCs alone. In clinical translation, it would appear that

Figure 3. SSRBCs but not NLRBCs accumulate in tumor microvessels within 30 minutes after injection. Intravital microscopy of the
vasculature of 8-day old 4T1 tumors implanted in the dorsal skin window chamber within 30 minutes after infusion of mice with SSRBCs (A, C, E) or
NLRBCs (B,D,F) shows the accumulation of SSRBCs but not NLRBCs in the tumor blood vessels and tumor parenchyma (A,B,E,F). At the same time,
SSRBC uptake is observed in the tumor vessels, there is minimal uptake in the adjacent subdermal blood vessels (C). There is also minimal uptake of
NLRBCs in adjacent subdermal blood vessels (D) (Magnification 56). Thirty minutes after infusion, the uptake of fluorescently-labeled SSRBCs (n = 5)
or NLRBCs (n = 5) in tumor vessels (G) and tumor parenchyma (H) is quantitated in still video images (fluorescence intensity (FI) at Magnification 206).
SSRBCs (n = 6) show significantly greater mean FI in tumor vessels and parenchyma (G and H respectively) compared to subdermal skin vessels or
NLRBCs (n = 3) (p = 0.00001 for FI of SSRBCs in tumor vessels and tumor parenchyma vs. respective controls in both G and H). Abbreviations in legend:
AS: adjacent subdermal skin vessels.
doi:10.1371/journal.pone.0052543.g003
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SSRBCs should be administered with caution and preferably

together with prooxidant agents to avoid promoting tumor

growth.

Importantly, mice infused with SS RBCs and ZnPP or ZnPP-D

showed no significant organ toxicity, and body weights were stable

throughout the study. Only the tumor showed extensive necrosis,

whereas spleen, liver, brain, lungs and kidneys from the treated

mice were devoid of infarction, inflammation and necrosis. Thus,

it appears that the cytotoxic activity of SSRBC/ZnPP-D is

selective for the tumor but not normal tissues. As a source of

SSRBCs for clinical use, nucleated sickle progenitor cells

(phenotypic and functional sickle cells) can be readily expanded/

differentiated in vitro. Moreover, nucleated SS progenitors can

also be transduced with virtually any tumoricidal transgene. Thus,

the SSRBC appears to be a potent and versatile new tool for

treatment of hypoxic solid tumors notable for their resistance to

existing cancer treatments.

Methods

Mice
All animal experiments were approved by the Duke University

ACUC. Female athymic homozygous nude mice (nu-/nu-),

between 8–12 weeks of age weighing 19–26 grams, obtained from

Charles River Laboratories (Wilmington, MA) or Harlan Labo-

ratories (Indianapolis, IN) were used for all experiments. The

animals were housed 5 animals per cage in a 12 h light-dark cycle

with water, food ad libitum. All infusions were performed using the

tail vein.

Cell lines, virus and reagents
The 4T1 murine mammary carcinoma, a thioguanine and

doxorubicin resistant tumor [51,52], were cultured with DMEM

supplemented with 10% (v/v) fetal bovine serum (and 1% (v/v)

antibiotics-antimycotics as previously described [53]. All cell lines

were monitored routinely and found to be free of mycoplasma

infection. Fresh solutions of hemin (Sigma) in DMSO and Zn (II)

Protoporphyrin IX (Frontier Scientific) in 50% DMSO-50%

0.1 M NaOH was made for each experiment. H2O2 was

purchased from (Sigma-Aldrich, St. Louis, MO).

Western blotting analysis of HO-1 expression
For immunoblotting, proteins were extracted from snap frozen

mouse tumor, kidney, and liver tissues. Tissues were homogenized

and dissolved in the cold RIPA buffer (Pierce, Rockford, IL). Cell

debris was separated by centrifuging twice at 10,000 g for 10 min

at 4uC. Whole protein concentration was measured by Bradford

assay (Bio-Rad Laboratories, Hercules, CA). Each Protein

preparation (100 mg) was electrophoresed in 12% sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Proteins

were transferred to PVDF (polyvinylidene fluoride) membrane and

blocked for 1 hour with 5% non-fat dried milk in TBST (20 mM

Tris-HCl, 150 mM NaCl, and 0.1% Tween 20, pH 7.5).

Figure 4. SSRBCs but not NLRBCs form microaggregates and occlude tumor microvessels. Thirty minutes after infusion of SSRBCs or
NLRBCs into mice bearing eight day old 4T1 tumors, diffuse tumor vaso-occlusion is evident in mice injected with SSRBCs (A,C,E) but not NLRBCs
(B,D,F). (Magnification 106was used in panels 1–4 and 206 in panels 5 and 6). Arrows indicate SSRBC adhesion to vascular walls, microaggregate
formation and partial or complete microvessel occlusion. The mice injected with SSRBCs (n = 5) showed a significantly greater percentage of occluded
tumor vessels compared to NLRBCs (n = 5) or adjacent subdermal skin vessels (G) (p = 0.00001 for SSRBCs in tumor vessels vs. NLRBCs or adjacent
subdermal skin vessels). Magnification 206 was used for quantitation of tumor microvessel occlusion. Abbreviations in legend: Adj. skin: adjacent
subdermal skin vessels.
doi:10.1371/journal.pone.0052543.g004

Sickle Cells Target/Potentiate Tumor Cytotoxics

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e52543



Membranes were incubated overnight with 1:500 diluted anti-

mouse HO-1 antibodies (Assay Designs, Ann Arbor, Michigan),

washed three times with TBST and incubated with 1:1000 diluted

horseradish peroxidase (HRP)-conjugated anti-mouse IgG anti-

body for 1 hour at room temperature followed by washing with

TBST. The blot was immunodetected with enhanced chemilumi-

nescence (ECL) detection system (Perkin Elmer, Waltham,

Massachusetts). For a loading control, 50 mg of protein was

loaded in 10% SDS-PAGE and blotted with 1:2000 diluted anti-

mouse b-actin antibody (Sigma-Aldrich).

Figure 5. SSRBCs accumulate to a significantly greater degree in tumors compared to NLRBCs. RFP-labeled SSRBCs (n = 4) or NLRBCs
(n = 2) were injected into mice bearing eight day old 4T1 tumors. Twenty four hours later tumors and organs were collected and RFP fluorescence
quantitated on sections of tumors and organs. The uptake of SSRBCs in tumors is significantly greater than NLRBCs (p = 0.0014) (A, B, D). In contrast,
the uptake of SSRBCs and NLRBCs is not significantly different in the spleen, lungs and kidneys (p.0.05) (A) (Magnification 56). H&E tumor sections
from SSRBC-treated mouse show focal areas of cytoplasmic eosinophilia consistent with ischemia (E) not present in tumors treated with NLRBCs (C)
(Magnification 206). Abbreviations in legend: negTumor, negLung, negSpleen, negKidney mean mice injected with NLRBCs or SSRBCs without RFP
label.
doi:10.1371/journal.pone.0052543.g005

Figure 6. SSRBCs but not NLRBCs combined with prooxidants ZnPP and ZnPP-D induce a tumoricidal response in 4T1 bearing mice.
The fraction of mice with tumors ,56 the pretreatment volumes versus time is shown (n = 10 for each treatment group). All three groups treated
with SSRBCs combined with ZnPP or ZnPP-D show significant tumor growth delay compared to PBS controls. In the adjacent Table, a control
experiment shows that tumor bearing animals receiving SSRBCs 16or 36 alone, NLRBC 16 or 36 alone, NLRBCs 16 or 36with ZnPP or ZnPP-D,
ZnPP alone or Doxil + ZnPP exhibited no significant tumor growth delay versus the PBS control. * indicates that mice receiving SSRBC16 alone
displayed significantly accelerated tumor growth compared to the PBS control.
doi:10.1371/journal.pone.0052543.g006
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Immunohistochemical localization of adhesion molecules
in tumor microvessels

Frozen tumor tissues were sectioned at 10 micron thickness and

were kept at 280uC until the immunohistochemistry was

performed (n = 5). Before staining, frozen tissue sections were

air-dried for 30 minutes and fixed for 10 minutes in cold acetone.

Tissues were air-dried again for 30 minutes and incubated with

phosphate-buffered saline (PBS) for 5 minutes. After 30-minute

blocking with 10% serum, tissues were incubated overnight at 4uC
with primary antibodies, CD31 (PECAM-1), CD106 (VCAM-1),

CD51 (Integrin av) all from BD Pharmingen and laminin a5, a

kind gift from Dr. Jeffrey H. Miner, Washington University, St.

Louis. Slides were then washed three times in PBS for 5 min

followed by the incubation with the appropriate secondary

antibody (Jackson Immuno-Research, West Grove, PA) for

30 min at room temperature. Again slides were washed three

times in PBS for 5 min followed by incubation with ABC-Elite

(Vector Laboratories, Burlingame, CA) for 30 min at room

temperature. Reaction was localized by using 3.39-diaminobenzi-

dine tetrachloride (DAB) working solution (Laboratory Vision,

Fremont, CA). Finally, the slides were counterstained with Harris

haematoxylin (Fisher Scientific, Pittsburgh, PA) and mounted with

coverslips. For image analysis the slides were systematically

scanned with a light microscope (Zeiss Axioskop 2 plus,

Oberkochen, Germany) and digital images were acquired from

each slide using 56, 106, and 406 objectives using the software

(Axiovision 3.1).

Collection, preparation and treatment of human RBCs
NLRBCs were obtained from normal healthy adults or SSRBCs

from homozygous SS patients with approval by the Institutional

Review Board and Ethics Committees of Duke University and

informed consent was obtained from each donor. All participants

provided their written informed consent to participate in this study

which was documented by two witnesses. Fresh blood samples

from patients homozygous for hemoglobin S and from normal

controls were collected into citrate tubes. RBCs were allowed to

separate from the buffy coat containing leukocytes and platelet-

rich plasma by gravity at 4uC for at least 2 h. Plasma and buffy

coat were removed by aspiration and RBCs were washed four

times in sterile PBS with 1.26 mM Ca2+, 0.9 mM Mg2+ (pH 7.4).

Packed RBCs were analyzed for leukocyte and platelet contam-

ination using an Automated Hematology Analyzer Sysmex K-

1000 (Sysmex, Co., Cobe, Japan). Packed RBCs were fluorescently

labeled with DiI (Molecular Probes, Eugene, OR) for in vivo uptake

studies as previously described [54],[55]. Dil has no effect on RBC

suspension viscosity or RBC survival in the circulation [54]. Cells

were then washed three times with 5 ml PBS with Ca2+ and Mg2+.

Window chamber surgery and murine mammary
carcinoma implantation

This procedure has been described previously [56]. General

anesthesia was induced by intraperitoneal (IP) injection of

100 mg/kg of ketamine (Abbott Laboratory, Chicago, IL) and

10 mg/kg of xylazine (Bayer, Shawnee Mission, KS). A double-

sided titanium frame window chamber was surgically implanted

into the dorsal skin fold under sterile conditions with aseptic

technique. Surgery involved carefully removing the epidermal and

dermal layers of one side of a dorsal skin fold, exposing the blood

vessels of the subcutaneous tissue adjacent to the striated muscles

of the opposing skin fold. The two sides of the chamber were

secured to the skin using stainless steel screws and sutures, followed

by injection of 16104 4T1 tumor cells into the exposed fascia. A

glass window was placed in the chamber to cover the exposed

Figure 7. Tumoricidal effect of the combination of hemin, H2O2 and ZnPP in a clonogenic tumor survival model. Three agent regimens
consisting of pre-treating 4T1 cells with i) hemin alone or combined with ZnPP for 2 hrs followed by the combination of ZnPP and H2O2 for 2 hrs or,
ii) ZnPP for 2 hours followed by the combination of hemin and H2O2 for 2 hours induced significant tumor cell death compared to each agent
individually (**p,0.0002) and any two of these agents used simultaneously ({p,0.0001). Clonogenic survival is shown as a mean of three
independent experiments with standard error (SE) indicated. See Table S2 for protocol used in these studies.
doi:10.1371/journal.pone.0052543.g007
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tissue, and was secured to the chamber with a snap ring. Animals

were kept in a specialized environmental chamber at 32–34uC and

50% humidity until in vivo studies were performed 8 days post-

surgery.

Intravital microscopy and visualization of RBC trafficking
The set up for window chamber visualization was identical to

that described above. Labeled human NLRBCs or SSRBCs

(300 mL; hematocrit 50% in PBS with Ca2+ and Mg2+) were

infused through the tail vein and blood flow dynamics were

observed in both tumor neovasculature and subdermal vessels for

at least 30 minutes, using LD Achroplan 20X/0.40 Korr and

Fluar 5X/0.25 objectives (Zeiss). Microcirculatory events and cell

adhesion were simultaneously recorded using a Trinitron Color

video monitor (model PVM-1353 MD, Sony) and JVC videocas-

sette recorder (model BR-S3784, VCR King, Durham, NC)

connected to a digital video camera C2400 (Hamamatsu

Photonics K.K., Japan). Blood vessels were also viewed under

fluorescence-illumination using a 100-W mercury arc lamp and

56 and 206magnifications.

Hemoglobin saturation determinations in the 4T1 tumor

microvasculature using hyperspectral imaging information was

described previously [57]. A Zeiss Axioskop 2 microscope (Carl

Zeiss, Inc., Thornwood, NY) served as the imaging platform.

Images were acquired with a CCD camera (DVC Company,

Austin, TX), and bandlimited optical filtering for hyperspectral

imaging was accomplished with a C-mounted liquid crystal

tunable filter (CRI, Inc., Woburn, MA). Image processing was

performed using Matlab software (The Mathworks, Inc., Natick,

MA). Microvessel-based pixel counts of vessels in window chamber

tumors were quantitated as a fraction of microvessels pixels with

hemoglobin saturations of 10% or less over the total number of

micropixels in the tumor as described [57].

Quantification of vaso-occlusion was performed by examining

videotapes using 206 magnification. Multiple segments of tumor

and adjacent normal subdermal microvessels were examined

30 minutes following SS RBC and normal RBC infusions. Vessels

were counted as occluded by considering labeled cells attached to

the vessel walls and immobile for at least 10 seconds with no

observable blood flow. The percentage of vessels occluded by SS

or normal RBCs was calculated by division of the number of

occluded vessels by the total number of vessels in the field that

contained visible blood flow at baseline.

Histology
The animals used in window chamber experiments were

sacrificed 30 minutes post-injection of Dil-labeled RBCs. Tumors

and organs were collected and snap frozen in OCT media. Forty

micron sections were cut from four standardized locations in each

organ mounted and examined via inverted fluorescence micros-

copy. Three random fields were imaged for each section of each

organ. RBC fluorescence intensity for each field was quantified

Figure 8. Schematic depiction of proposed pathophysiology of tumor killing induced by SSRBCs and the HO-1 inhibitor ZnPP. The
hypoxic and acidic tumor milieu activates HIF1a, which, in turn, stimulates VEGF and HO-1 expression and the production of TNFa. TNFa upregulates
several adhesion molecules on tumor endothelium, including several endothelial cognate adhesion ligands for the major adhesion receptors
expressed on SSRBCs. Deformable non-sickled SS RBCs adhere to the activated endothelium of the tumor vasculature, along with leukocytes to form
microaggregates leading to tumor vascular obstruction/occlusion. Entrapped SSRBCs release SS hemoglobin which is converted rapidly to
methemoglobin and cleaved to liberate free heme. Hydrophobic and lipophilic heme and/or heme-nitrosyl complexes permeate tumor and
endothelial cell membranes where they catalytically oxidize lipids, proteins and DNA causing cell death. In the presence of ZnPP, a competitive
inhibitor of HO-1, intracellular heme and oxidative products such as reactive oxygen and nitrogen species (ROS and RNS) are free to exert their potent
oxidative function leading to tumor and endothelial cell death.
doi:10.1371/journal.pone.0052543.g008
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using Adobe Photoshop CS2 software (Adobe Systems Inc., San

Jose, CA). Five determinations of pixel intensity were obtained for

each field and averaged for the three fields to obtain mean

fluorescence intensity. The mean fluorescence values were

averaged among groups of animals for statistical analysis. In

tumor therapy studies, tumors, organs and brain from hippocam-

pus, cortex, cerebellum and Purkinje fibers were collected in 4%

paraformaldehyde or 10% formalin and stained using hematoxylin

and eosin and Prussian blue.

Tumor therapy studies
All procedures were approved by the Duke University

Institutional Animal Care and Use Committees or the Animal

Use Committees in compliance with the Guide for the Care and

Use of Laboratory Animals. For the studies in mice bearing 4T1

carcinoma, tumor volume and body weight were measured every 2

days, and volumes were calculated as p/6*length2*width. The

treatment endpoint was 56 treatment volume or 1500 mm3,

whichever was reached first. Zinc (II) protoporphyrin IX (Zn-PP;

Frontier Scientific) was dissolved in a solution of saline and N,N

dimethylformamide (DMF) at a 95/5 volume ratio to a

concentration of 0.1 mg/ml prior to i.p. injection. Lyophilized

Doxorubicin (DOX; Bedford Laboratories) was hydrated with

saline (2 mg/ml) prior to i.v. administration. Study groups

consisted of 10 mice per cohort. Treatments were started when

the tumors were at a median volume of 72 mm3 (57–90 mm3

interquartile range). SSRBCs were infused iv in 150–200 ml,

hematocrit 50%, Zn-PP, 0.5 mg/kg, was injected i.p. and

Doxorubicin, 5 mg/kg, was administered. i.v. on a schedule

shown in Table S1. Tumors were measured twice a week with

standard calipers and mice were monitored for toxicity. Mice were

euthanized if toxicity was evident or tumor burden exceeded

1500 mm3.

Biodistribution studies
RFP-labeled SSRBCs or NLRBCs (300 mL; hematocrit 50% in

PBS with Ca2+ and Mg2+) were infused through the tail vein into

atyhmic nude mice bearing eight day old 4T1 tumors. Twenty

four hours later tumors and organs were collected. RFP

fluorescence was quantitated as described below at magnification

56 using Adobe Photoshop CS2 software (Adobe Systems Inc.,

San Jose, CA). Five to ten determinations of pixel intensity were

obtained for each field and averaged for the three fields to obtain

mean fluorescence intensity. The mean fluorescence values for

tumors and organs in each group were used for statistical analysis.

Clonogenic survival assays
4T1 were plated in 6-well plates at two different densities (100

and 300 cells per well) in 3 ml of media and allowed to attach for

24 hr at 37uC. For the individual treatments, cells were treated for

2 hr with DMSO (vehicle), hemin (100 mM), H2O2 (100 mM), or

the Zn (II) protoporphyrin IX (ZnPP) (10 mM). For the combina-

tion treatments, cells were treated with the indicated agents for

2 hr, which were then removed and followed by treatment with

the other agents for an additional 2 hr. After the last treatment,

the media containing drugs was removed and the cells incubated

in fresh media at 5% CO2 and 37uC for 7–10 days. After

incubation, cells were fixed with 10% methanol-10% acetic acid

and stained with a 0.4% crystal violet solution. Colonies with .50

cells were counted using a ColCounter (Oxford Optronix). Plating

efficiencies were determined for each treatment and normalized to

controls. The data shown in Figure 7 is the mean of 3 independent

experiments. The protocol for this study is shown in Table S2.

Statistics
All data analysis was performed using GraphPad Prism version

4.03 for Windows (GraphPad Software, San Diego California

USA). Kaplan-Meier analysis was used to evaluate treatment

efficacy for 4T1 carcinoma studies. Statistical comparison were

performed with Kruskal-Wallis or log rank test. For multiple

comparisons in the 4T1 study, p,0.01 was considered the threshold

for significance. In clonogenic tumor survival studies, the plating

efficiency was 0.4 for 4T1 cells and 4T1 cell survival was normalized

to the DMSO control. Two way ANOVA was used to compare

surviving fraction of cells among independent treatment groups with

treatment and experiment as categorical independent factors.

Specific contrasts by F test under linear models were used to assess

the treatment difference between groups with type I error adjusted

to 0.01. Window chamber/histology data, starting tumor volume

size, maximum weight change were analyzed using either student

T-test or Kruskal-Wallis for multiple group comparisons.

Supporting Information

Figure S1 Expression of heme oxygenase-1 in tumor and
normal tissues. Western blots of protein extracted from 4T1

tumor, normal liver and kidney, stained for heme oxygenase-1 (HO-

1). Increased expression of HO-1 in the tumor was observed

compared to the kidney and liver tissues. For a loading control,

proteins were blotted with an anti-mouse b-actin antibody.

(TIF)

Figure S2 H&E sections of organs from 4T1 bearing
mice 24 hours post RBC infusion. H&E sections of lung,

spleen and kidney from mice infused with SSRBCs (n = 5) or

NLRBCs (n = 3) 24 hours post SSRBC or NLRBC infusion were

unremarkable and notably devoid of inflammation, infarction or

necrosis. (Magnification106)

(TIF)

Movie S1 Intravital microscopy of the skin window of
mice using 8 day old 4T1 carcinoma infused with
SSRBCs or NLRBCs. SSRBC-1: Five minutes after infusion

of SSRBCs, the SSRBCs are adherent to vascular walls and

deposited in relatively avascular core (circular, dark area at top)

and periphery of the tumor microvasculature. Microcapillary

obstruction is evident along with reduced velocity of SSRBCs as

they transit through partially obstructed vessels. At 20 minutes,

SSRBC microaggregates have formed in the vessels several of

which have progressed to frank vaso-occlusion (Magnifications

106). At 30 minutes, extensive aggregate formation and vaso-

occlusion is noted along with retrograde blood flow in a patent

capillary segment within surrounding occluded microvessels

(Magnifications 206). NLRBCs depicted 30 minutes after infusion

into mice with 8 day old 4T1 carcinoma exhibit minimal

adherence to tumor microvessels with no evidence of vaso-

occlusion (Magnifications 106).

(MOV)

Table S1 Schedule of treatments.

(TIF)

Table S2 Clonogenic tumor model protocol.

(TIF)

Acknowledgments

We thank Dr. Jeffrey H. Miner (Washington University, St. Louis) for

providing the anti-mouse laminin-a5 antibody, Dr. Chris Patton and Brian

Fischer for assistance with photography and histology respectively and Drs.

Fan Yuan, PhD and Stephen Embury for helpful discussions.

Sickle Cells Target/Potentiate Tumor Cytotoxics

PLOS ONE | www.plosone.org 10 January 2013 | Volume 8 | Issue 1 | e52543



Author Contributions

Conceived and designed the experiments: DST. Performed the experi-

ments: DST BLV RZ HY MRD GG ZNR EM JE YC BS KA RJB DF.

Analyzed the data: DST MWD MJT LL GP BLV RZ BS. Wrote the

paper: DST MWD.

References

1. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358: 2039–2049.

2. Dewhirst MW (2009) Relationships between cycling hypoxia, HIF-1, angiogen-
esis and oxidative stress. Radiat Res 172: 653–665.

3. Bristow RG, Hill RP (2008) Hypoxia, DNA repair and genetic instability. Nat
Rev Cancer 8: 180–192

4. Pries AR, Hopfner M, Noble F, Dewhirst MW, Secomb TW (2010) The shunt

problem: control of functional shunting in normal and tumour vasculature. Nat
Rev Cancer 10: 587–593.

5. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev
Cancer 11:393–410.

6. Reddy SB, Williamson SK (2009) Tirapazamine: a novel agent targeting

hypoxic tumor cells. Expert Opin Investig Drugs 8:77–87.
7. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev

Cancer. 6:583–92.
8. Brown JM, William WR (2004) Exploiting tumour hypoxia in cancer treatment

Nat Rev Cancer 4: 437–447.
9. Bennewith K, Dedhar S (2011) Targeting hypoxic tumour cells to overcome

Metastasis. BMC Cancer 11:504–510.

10. Stuart MJ, Nagel RL (2004) Sickle-cell disease. Lancet 364:1343–60.
11. Faller D (1994) Vascular modulation. In: Embury S, Hebbel R, Mohandas N,

and Steinberg M, editors. Sickle Cell Disease: Basic Principles and Clinical
Practice. New York: Raven. pp. 235–246.

12. Embury SH (2004) The not-so-simple process of sickle cell vasoocclusion.

Microcirculation 11:101–13.
13. Osarogiagbon UR, Choong S, Belcher JD, Vercellotti GM, Paller MS, et al.

(2000)Reperfusion injury pathophysiology in sickle transgenic mice. Blood 96:
314–320.

14. Belcher JD, Bryant CJ, Nguyen J, Bowlin PR, Kielbik MC, et al. (2003)

Transgenic sickle mice have vascular inflammation. Blood 101: 3953–3959.
15. Solovey A, Lin Y, Browne P, Choong S, Wayner E, et al, 1997) Circulating

activated endothelial cells in sickle cell anemia. N Engl J Med 337: 1584–1590.
16. Rees DC, Williams TN, Gladwin MT (2010) Sickle-cell disease. Lancet

376:2018–31.
17. Brown MD, Wick TM, Eckman JR (2001) Activation of vascular endothelial cell

adhesion molecule expression by sickle blood cells. Pediatr Pathol Mol Med 20:

47–72,
18. Smolinski PA, Offermann MK, Eckman JR, Wick TM (1995) Doublestranded

RNA induces sickle erythrocyte adherence to endothelium: a potential role for
viral infection in vaso-occlusive pain episodes in sickle cell anemia. Blood 85:

2945–2950,

19. Sultana C, Shen Y, Rattan V, Johnson C, Kalra VK (1998) Interaction of sickle
erythrocytes with endothelial cells in the presence of endothelial cell conditioned

medium induces oxidant stress leading to transendothelial migration of
monocytes. Blood 92: 3924–3935.

20. Terada LS (2002) Oxidative stress and endothelial activation. Crit Care Med 30:
S186–S191.

21. Kalambur VS, Mahaseth H, Bischof JC, Kielbik MC, Welch TE, et al. (2004)

Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal
skin fold chamber for intravital microscopy. Am J Hematol 77:117–125.

22. Telen MJ (2005) Erythrocyte adhesion receptors: blood group antigens and
related molecules. Transfus Med Rev 19: 32–44.

23. Kaul DK, Hebbel RP (2000) Hypoxia/reoxygenation causes inflammatory

response in transgenic sickle mice but not in normal mice. J Clin Invest 106:
411–420.

24. Mackay F, Loetscher H, Stueber D, Gehr G, Lesslauer W (1993) Tumor necrosis
factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is

under dominant control of one TNF receptor type, TNF-R55. J Exp Med
177:1277–86.

25. Belcher JD, Mahaseth H, Welch TE, Vilback AE, Sonbol KM, et al. (2005)

Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in
transgenic sickle mice. Am J Physiol Heart Circ Physiol 288:H2715–25.

26. Kaul DK, Finnegan E, Barabino GA (2009) Sickle red cell-endothelium
interactions.Microcirculation 16: 97–111.

27. Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for

tumor targeting by circulating ligands. Nat Biotechnol 15: 542–6.
28. Dienst A, Grunow A, Unruh M, Rabausch B, Nör JE, et al. (2005) Specific

occlusion of murine and human tumor vasculature by VCAM-1-targeted
recombinant fusion proteins. J Natl Cancer Inst 97, 733–747.

29. Kikkawa Y, Sudo R, Kon J, Mizuguchi T, Nomizu M, et al. (2008) Laminin
alpha 5 mediates ectopic adhesion of hepatocellular carcinoma through integrins

and/or Lutheran/basal cell adhesion molecule. Exp Cell Res 314: 2579–2590.

30. Zennadi R, Moeller BJ, Whalen EJ, Batchvarova M, Xu K, et al. (2004)
Epinephrine acts through erythroid signaling pathways to activate sickle cell

adhesion to endothelium via LW-alphavbeta3 interactions. Blood 104: 3774–
3781.

31. Terman DS (1999) Compositions and Methods for Treatment of Neoplastic
Disease. US patent Serial Number 7,803,637, filed August 30, 1999, issued

September 28, 2012.

32. Brown SL, Ewing JR, Nagaraja TN, Swerdlow PS, Cao Y, et al. (2003) Sickle
red blood cells accumulate in tumor. Magn Reson Med 50:1209–14.

33. Milosevic M, Quirt I, Levin W, Fyles A, Manchul L, et al. (2001) Intratumoral

sickling in a patient with cervix cancer and sickle trait: effect on blood flow and
oxygenation. Gynecol Oncol 83:428–31.

34. Agrawal A, Balpande DN, Khan A, Vagh SJ, Shukla S, et al. (2008) Sickle cell

crisis leading to extensive necrosis in a low-grade glioma and masquerading

high-grade lesion. Pediatr Neurosurg. 44:471–3.

35. Hebbel RP, Morgan WT, Eaton JW, Hedlund BE (1988) Accelerated

autooxidation and heme loss due to instability of sickle hemoglobin Proc Nat

Acad Sci 85: 237–241.

36. Repka T, Hebbel RP (1991) Hydroxyl radical formation by sickle erythrocyte

membranes: Role of pathologic iron deposits and cytoplasmic reducing agents.

Blood 78: 2753–2758.

37. Ballas SK, Marcolina MJ (2006) Hyperhemolysis during the evolution of
uncomplicated acute painful episodes in patients with sickle cell anemia.

Transfusion 46: 105–110.

38. Hebbel RP, Eaton JW, Balasingam M, Steinberg MH (1982) Spontaneous
oxygen radical generation by sickle erythrocytes. J Clin Invest 70: 1253–1259.

39. Kato GJ, Gladwin MT, Steinberg MH (2007) Deconstructing sickle cell disease:

Reappraisal of the role of hemolysis in the development of clinical
subphenotypes. Blood Rev 21: 37–47.

40. Wood KC, Grander DN (2007) Sickle cell disease: Role of reactive oxygen and

nitrogen metabolites. Clin Exp Pharm Physiol 34: 926–32.

41. Balla G, Vercellotti BM, Muller-Eberhard U, Eaton J, Jacob HS (1991)
Exposure of Endothelial cells to free heme potentiates damage mediated by

granulocytes and toxic oxygen species. Lab. Invest. 64: 648–655.

42. Simizu S, Takada M, Umezawa K, Imoto M (1998) Requirement of caspase-3(-
like) protease-mediated hydrogen peroxide production for apoptosis induced by

various anticancer drugs. J Biol Chem 273: 26900–7.

43. Fang J, Sawa T, Akaike T, Greish K, Maeda H (2004) Enhancement of
chemotherapeutic response of tumor cells by a heme oxygenase inhibitor,

pegylated zinc protoporphyrin. Int J Cancer 109: 1–8.

44. Labbe RF, Vreman HJ, Stevenson DK (1999) Zinc protoporphyrin: A
metabolite with a mission. Clin Chem 45: 2060–2072.

45. Sigggaard-Andersen O, Wimberley PD, Gothgen I, Siggaard-Andersen M

(1984) A mathematical model of the hemoglobin-oxygen dissociation curve of
human blodd and of the oxygen partial pressure as a function of temperature

Clin Chem. 30: 1646–1651.

46. Vishwanath K, Yuan H, Barry WT, Dewhirst MW, Ramanujam N (2009) Using
optical spectroscopy to longitudinally monitor physiological changes within solid

tumors. Neoplasia 11 :889–900.

47. Adam MF, Dorie MJ, Brown JM (1999) Oxygen tension measurements of
tumors growing in mice. Int J Radiat Oncol Biol Phys 45: 171–80.

48. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, et al. (2002) Pro-oxidant

and cytotoxic effects of circulating heme. Blood. 100: 879–887.

49. Jozkowicz A, Was H, Dulak J (2007) Heme oxygenase-1 in tumors: is it a false
friend? Antioxid Redox Signal 9:2099–2117.

50. Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, et al., (1997) Hypoxia-inducible

factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in
response to hypoxia. J Biol Chem 272:5375–81.

51. Du GJ, Song ZH, Lin HH, Han XF, Zhang S, et al.. (2008) Luteolin as a

glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in

breast cancer cells. Biochem Biophys Res Commun 372: 497–502.

52. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined

by analysis of the sequential dissemination of subpopulations of a mouse

mammary tumor. Cancer Res 52: 1399–1405.

53. Cao YT, Li CY, Moeller BJ, Yu D, Zhao Y, et al. (2005) Observation of

incipient tumor angiogenesis that is independent of hypoxia and hypoxia

inducible factor-1 activation. Cancer Res 65: 5498–5505.

54. Zennadi R, Whalen EJ, Batchvarova M, Xu K, Shan S, et al. (2007)
Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-

occlusion in vivo. Blood 110: 2708–2717.

55. Unthank JL, Lash JM, Nixon JC, Sidner RA, Bohlen HG (1993) Evaluation of
carbocyanine-labeled erythrocytes for microvascular measurements. Microvasc

Res 45: 193–210.

56. Algire GH, Legallais FY (1949) Recent developments in the transparent-
chamber technique as adapted to the mouse. J Natl Cancer Inst 10: 225–253.

57. Sorg BS, Moeller BJ, Donovan O, Cao Y, Dewhirst MW (2005) Hyperspectral

imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia
development. J Biomed Opt 10:44004.

Sickle Cells Target/Potentiate Tumor Cytotoxics

PLOS ONE | www.plosone.org 11 January 2013 | Volume 8 | Issue 1 | e52543


